Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models

Author:

Chelton Dudley B.1,Freilich Michael H.1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract Wind measurements by the National Aeronautics and Space Administration (NASA) scatterometer (NSCAT) and the SeaWinds scatterometer on the NASA QuikSCAT satellite are compared with buoy observations to establish that the accuracies of both scatterometers are essentially the same. The scatterometer measurement errors are best characterized in terms of random component errors, which are about 0.75 and 1.5 m s−1 for the along-wind and crosswind components, respectively. The NSCAT and QuikSCAT datasets provide a consistent baseline from which recent changes in the accuracies of 10-m wind analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the U.S. National Centers for Environmental Prediction (NCEP) operational numerical weather prediction (NWP) models are assessed from consideration of three time periods: September 1996–June 1997, August 1999–July 2000, and February 2002–January 2003. These correspond, respectively, to the 9.5-month duration of the NSCAT mission, the first 12 months of the QuikSCAT mission, and the first year after both ECMWF and NCEP began assimilating QuikSCAT observations. There were large improvements in the accuracies of both NWP models between the 1997 and 2000 time periods. Though modest in comparison, there were further improvements in 2002, at least partly attributable to the assimilation of QuikSCAT observations in both models. There is no evidence of bias in the 10-m wind speeds in the NCEP model. The 10-m wind speeds in the ECMWF model, however, are shown to be biased low by about 0.4 m s−1. While it is difficult to eliminate systematic errors this small, a bias of 0.4 m s−1 corresponds to a typical wind stress bias of more than 10%. This wind stress bias increases to nearly 20% if atmospheric stability effects are not taken into account. Biases of these magnitudes will result in significant systematic errors in ocean general circulation models that are forced by ECMWF winds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Zero Current Equivalent Wind Correction for Remotely Sensed Winds;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Air-sea gas exchange and marine gases;Reference Module in Earth Systems and Environmental Sciences;2024

3. Ship route simulation based on the cluster analysis;Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova;2023-11-09

4. Wave hindcast under tropical cyclone conditions in the South China Sea: sensitivity to wind fields;Acta Oceanologica Sinica;2023-10

5. Estimation of Surface Current Divergence from Satellite Doppler Radar Scatterometer Measurements of Surface Ocean Velocity;Journal of Atmospheric and Oceanic Technology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3