Multipoint Monin–Obukhov Similarity and Its Application to Turbulence Spectra in the Convective Atmospheric Surface Layer

Author:

Tong Chenning1,Nguyen Khuong X.1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, South Carolina

Abstract

Abstract A generalized Monin–Obukhov similarity hypothesis for the atmospheric surface layer is proposed. It employs the Monin–Obukhov length as a length scale in both the horizontal and vertical directions, in contrast to the original Monin–Obukhov similarity. Therefore, the horizontal turbulence scales, which are contained in multipoint statistics, must be explicitly included. The similarity hypothesis is formulated for the joint probability density function (JPDF) of multipoint velocity and temperature differences and is termed the multipoint Monin–Obukhov similarity (MMO). In MMO, the nondimensional JPDF in the surface layer depends on the separation vectors and the heights from the ground, both nondimensionalized by the Monin–Obukhov length. A key aspect of MMO is that at heights much smaller than the absolute value of the Monin–Obukhov length, both shear and buoyancy can be important. As an application, MMO is used to predict the two-dimensional horizontal turbulence spectra in the convective surface layer. It predicts a two-layer structure with three scaling ranges. Comparisons of the predicted spectra with those obtained using high-resolution large-eddy simulations show general agreement, supporting MMO. Within MMO, full similarity is only achieved for multipoint statistics, while similarity properties (or a lack thereof) for one-point statistics (the original Monin–Obukhov similarity) can be derived from those of multipoint statistics. MMO provides a new framework for analyzing the turbulence statistics and for understanding the dynamics in the atmospheric surface layer.

Publisher

American Meteorological Society

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3