Modeling Condensation in Shallow Nonprecipitating Convection

Author:

Grabowski Wojciech W.1,Jarecka Dorota2

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. University of Warsaw, Warsaw, Poland, and National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract Two schemes for modeling condensation in warm nonprecipitating clouds are compared. The first one is the efficient bulk condensation scheme where cloudy volumes are always at saturation and cloud water evaporates instantaneously to maintain saturation. The second one is the comprehensive bin condensation scheme that predicts the evolution of the cloud droplet spectrum and allows sub- and supersaturations in cloudy volumes. The emphasis is on the impact of the two schemes on cloud dynamics. Theoretical considerations show that the bulk condensation scheme provides more buoyancy than the bin scheme, but the effect is small, with the potential density temperature difference around 0.1 K for 1% supersaturation. The 1D advection–condensation tests document the high-vertical-resolution requirement for the bin scheme to resolve the cloud-base supersaturation maximum and CCN activation, which is difficult to employ in 3D cloud simulations. Simulations of shallow convection cloud fields are executed applying bulk and bin schemes, with the mean droplet concentrations in the bin scheme covering a wide range, from about 5 to over 4000 cm−3. Simulations employ the microphysical piggybacking methodology to extract impacts with high confidence. They show that the differences in cloud fields simulated with bulk and bin schemes come not from small differences in the condensation but from more significant differences in the evaporation of cloud water near cloud edges as a result of entrainment and mixing with the environment. The latter makes the impact of cloud microphysics on simulated macroscopic cloud field properties even more difficult to assess because of highly uncertain subgrid-scale parameterizations.

Publisher

American Meteorological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3