Flux Replacement as a Method to Diagnose Coupled Land–Atmosphere Model Feedback

Author:

Dirmeyer Paul A.1,Zhao Mei1

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract The potential role of the land surface state in improving predictions of seasonal climate is investigated with a coupled land–atmosphere climate model. Climate simulations for 18 boreal-summer seasons (1982–99) have been conducted with specified observed sea surface temperature (SST). The impact on prediction skill of the initial land surface state (interannually varying versus climatological soil wetness) and the effect of errors in downward surface fluxes (precipitation and longwave/shortwave radiation) over land are investigated with a number of parallel experiments. Flux errors are addressed by replacing the downward fluxes with observed values in various combinations to ascertain the separate roles of water and energy flux errors on land surface state variables, upward water and energy fluxes from the land surface, and the important climate variables of precipitation and near-surface air temperature. Large systematic errors are found in the model, which are only mildly alleviated by the specification of realistic initial soil wetness. The model shows little skill in simulating seasonal anomalies of precipitation, but it does have skill in simulating temperature variations. Replacement of the downward surface fluxes has a clear positive impact on systematic errors, suggesting that the land–atmosphere feedback is helping to exacerbate climate drift. Improvement in the simulation of year-to-year variations in climate is even more evident. With flux replacement, the climate model simulates temperature anomalies with considerable skill over nearly all land areas, and a large fraction of the globe shows significant skill in the simulation of precipitation anomalies. This suggests that the land surface can communicate climate anomalies back to the atmosphere, given proper meteorological forcing. Flux substitution appears to have the largest benefit to improving precipitation skill over the Northern Hemisphere midlatitudes, whereas use of realistic land surface initial conditions improves skill to significant levels over regions of the Southern Hemisphere. Correlations between sets of integrations show that the model has a robust and systematic global response to SST anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference52 articles.

1. The NCAR Climate System Model, version one.;Boville;J. Climate,1998

2. Documentation of the solar radiation parameterization in the GLAS Climate Model.;Davies,1982

3. The effect of the cumulus convection on the climate of the COLA general circulation model.;DeWitt,1996

4. Climate drift in a coupled land–atmosphere model.;Dirmeyer;J. Hydrometeor,2001

5. The role of the land surface background state in climate predictability.;Dirmeyer;J. Hydrometeor,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3