Diurnally Forced Tropical Gravity Waves under Varying Stability

Author:

Short Ewan12ORCID,Lane Todd P.12,Bishop Craig H.12,Wheeler Matthew C.3

Affiliation:

1. a School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria, Australia

2. b ARC Centre of Excellence for Climate Extremes, University of Melbourne, Melbourne, Victoria, Australia

3. c Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

Abstract Diurnal processes play a primary role in tropical weather. A leading hypothesis is that atmospheric gravity waves diurnally forced near coastlines propagate both offshore and inland, encouraging convection as they do so. In this study we extend the linear analytic theory of diurnally forced gravity waves, allowing for discontinuities in stability and for linear changes in stability over a finite-depth “transition layer.” As an illustrative example, we first consider the response to a commonly studied heating function emulating diurnally oscillating coastal temperature gradients, with a low-level stability change between the boundary layer and troposphere. Gravity wave rays resembling the upper branches of “Saint Andrew’s cross” are forced along the coastline at the surface, with the stability changes inducing reflection, refraction, and ducting of the individual waves comprising the rays, with analogous behavior evident in the rays themselves. Refraction occurs smoothly in the transition-layer solution, with substantially less reflection than in the discontinuous solution. Second, we consider a new heating function which emulates an upper-level convective heating diurnal cycle, and consider stability changes associated with the tropical tropopause. Reflection, refraction, and ducting again occur, with the lower branches of Saint Andrew’s cross now evident. We compare these solutions to observations taken during the Years of the Maritime Continent field campaign, noting better qualitative agreement with the transition-layer solution than the discontinuous solution, suggesting the tropopause is an even weaker gravity wave reflector than previously thought. Significance Statement This study extends our theoretical understanding of how forced atmospheric gravity waves change with atmospheric structure. Gravity wave behavior depends on atmospheric stability: how much the atmosphere resists vertical displacements of air. Where stability changes, waves reflect and refract, analogously to when light passes from water to air. Our study presents new mathematical tools for understanding this reflection and refraction, demonstrating reflection is substantially weaker when stability increases over “transition layers,” than when stability increases suddenly. Our results suggest the tropical tropopause reflects less gravity wave energy than previously thought, with potential design implications for weather and climate models, to be assessed in future work.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Abramowitz, M., and I. A. Stegun, 1972: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, 1076 pp.

2. Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment;Alexander, M. J.,2004

3. Global detection and analysis of coastline-associated rainfall using an objective pattern recognition technique;Bergemann, M.,2015

4. A 1D RCE study of factors affecting the tropical tropopause layer and surface climate;Dacie, S.,2019

5. An analytical study of the sea breeze;Dalu, G. A.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3