A Bias Correction Scheme with the Symmetric Cloud Proxy Variable and Its Influence on Assimilating All-Sky GOES-16 Brightness Temperatures

Author:

Feng Chengfeng1ORCID,Pu Zhaoxia1

Affiliation:

1. a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract All-sky assimilation of brightness temperatures (BTs) from GOES-16 infrared water vapor channels is challenging, primarily because these channels are sensitive to cloud ice that causes large nonlinear errors in the forecast and forward models. Thus, bias correction (BC) for all-sky assimilation of GOES-16 BTs is vital. This study examines the impacts of different BC schemes, especially for a scheme with a quartic polynomial of cloud predictors (the ASRBC4 scheme), on the analysis and WRF Model forecasts of tropical cyclones when assimilating the all-sky GOES-16 channel-8 BTs using the NCEP GSI-based 3D ensemble–variational hybrid data assimilation (DA) system with variational BC (VarBC). Long-term statistics are performed during the NASA Convective Processes Experiment field campaign (2017). Results demonstrate that the ASRBC4 scheme effectively reduces the average of all-sky scaled observation-minus-backgrounds (OmBs) in a cloudy sky and alleviates their nonlinear conditional biases with respect to the symmetric cloud proxy variable, in contrast to the BC schemes without the cloud predictor or with a first-order cloud predictor. In addition, adopting the ASRBC4 scheme in DA decreases the positive temperature increments at 200 hPa and the accompanying midlevel cyclonic wind increments in the analysis of Tropical Storm (TS) Cindy (2017). Applying the ASRBC4 scheme also leads to better storm-track predictions for TS Cindy (2017) and Hurricane Laura (2022), compared to experiments with other BC schemes. Overall, this study highlights the importance of reducing nonlinear biases of OmBs in a cloudy sky for successful all-sky assimilation of BTs from GOES-16 infrared water vapor channels.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference70 articles.

1. Adaptive bias correction for satellite data in a numerical weather prediction system;Auligné, T.,2007

2. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model;Bae, S. Y.,2016

3. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation;Bauer, P.,2010

4. Satellite cloud and precipitation assimilation at operational NWP centres;Bauer, P.,2011

5. The quiet revolution of numerical weather prediction;Bauer, P.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3