High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget

Author:

Braun Scott A.1

Affiliation:

1. Mesoscale Atmospheric Processes Branch, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine budgets of water vapor, cloud condensate, and precipitation. Virtually all budget terms are derived directly from the model (except for the effects of storm motion). The water vapor budget reveals that a majority of the condensation in the eyewall occurs in convective hot towers, while outside of the eyewall most of the condensation occurs in weaker updrafts, indicative of a larger role of stratiform precipitation processes. The ocean source of water vapor in the eyewall region is only a very small fraction of that transported inward in the boundary layer inflow or that condensed in the updrafts. In contrast, in the outer regions, the ocean vapor source is larger owing to the larger area, counters the drying effect of low-level subsidence, and enhances the moisture transported in toward the eyewall. In this mature storm, cloud condensate is consumed as rapidly as it is produced. Cloud water peaks at the top of the boundary layer and within the melting layer, where cooling from melting enhances condensation. Unlike in squall lines, in the hurricane, very little condensate produced in the eyewall convection is transported outward into the surrounding precipitation area. Most of the mass ejected outward is likely in the form of small snow particles that seed the outer regions and enhance in situ stratiform precipitation development through additional growth by vapor deposition and aggregation. This study also examines artificial source terms for cloud and precipitation mass associated with setting to zero negative mixing ratios that arise from numerical advection errors. Although small at any given point and time, the cumulative effect of these terms contributes an amount of mass equivalent to 13% of the total condensation and 15%–20% of the precipitation. Thus, these terms must be accounted for to balance the model budgets, and the results suggest the need for improved model numerics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3