Regression-Guided Clustering: A Semisupervised Method for Circulation-to-Environment Synoptic Classification

Author:

Cannon Alex J.

Abstract

AbstractRegression-guided clustering is introduced as a means of constructing circulation-to-environment synoptic climatological classifications. Rather than applying an unsupervised clustering algorithm to synoptic-scale atmospheric circulation data, one instead augments the atmospheric circulation dataset with predictions from a supervised regression model linking circulation to environment. The combined dataset is then entered into the clustering algorithm. The level of influence of the environmental dataset can be controlled by a simple weighting factor. The method is generic in that the choice of regression model and clustering algorithm is left to the user. Examples are given using standard multivariate linear regression models and the k-means clustering algorithm, both established methods in synoptic climatology. Results for southern British Columbia, Canada, indicate that model performance can be made to range between that of a fully unsupervised algorithm and a fully supervised algorithm.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference23 articles.

1. Fuzzy rule-based classification of atmospheric circulation patterns;Bardossy;Int. J. Climatol.,1995

2. Synoptic Climatology: Methods and Applications;Barry,1973

3. Classification and Regression Trees;Breiman,1984

4. Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network;Cannon;J. Hydrometeor.,2008

5. Automated, supervised synoptic map-pattern classification using recursive partitioning trees;Cannon,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3