Climate Change, High-Temperature Stress, Rice Productivity, and Water Use in Eastern China: A New Superensemble-Based Probabilistic Projection

Author:

Tao Fulu,Zhang Zhao

Abstract

AbstractThe impact of climate change on rice productivity in China remains highly uncertain because of uncertainties from climate change scenarios, parameterizations of biophysical processes, and extreme temperature stress in crop models. Here, the Model to Capture the Crop–Weather Relationship over a Large Area (MCWLA)-Rice crop model was developed by parameterizing the process-based general crop model MCWLA for rice crop. Bayesian probability inversion and a Markov chain Monte Carlo technique were then applied to MCWLA-Rice to analyze uncertainties in parameter estimations and to optimize parameters. Ensemble hindcasts showed that MCWLA-Rice could capture the interannual variability of the detrended historical yield series fairly well, especially over a large area. A superensemble-based probabilistic projection system (SuperEPPS) coupled to MCWLA-Rice was developed and applied to project the probabilistic changes of rice productivity and water use in eastern China under scenarios of future climate change. Results showed that across most cells in the study region, relative to 1961–90 levels, the rice yield would change on average by 7.5%–17.5% (from −10.4% to 3.0%), 0.0%–25.0% (from −26.7% to 2.1%), and from −10.0% to 25.0% (from −39.2% to −6.4%) during the 2020s, 2050s, and 2080s, respectively, in response to climate change, with (without) consideration of CO2 fertilization effects. The rice photosynthesis rate, biomass, and yield would increase as a result of increases in mean temperature, solar radiation, and CO2 concentration, although the rice development rate could accelerate particularly after the heading stage. Meanwhile, the risk of high-temperature stress on rice productivity would also increase notably with climate change. The effects of extreme temperature stress on rice productivity were explicitly parameterized and addressed in the study.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3