The Surface Radiation Budget over Oceans and Continents

Author:

Garratt J. R.1,Prata A. J.1,Rotstayn L. D.1,McAvaney B. J.2,Cusack S.3

Affiliation:

1. CSIRO, Division of Atmospheric Research, Aspendale, Victoria, Australia

2. Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

3. Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berkshire, United Kingdom

Abstract

Abstract An updated evaluation of the surface radiation budget in climate models (1994–96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m−2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m−2), excess net radiation (RN) and downwelling shortwave flux density (So↓) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%–20% (12 W m−2) in RN and about 12% (20 W m−2) in So↓]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m−2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m−2; for So↓, it is 25 (60) W m−2 over land (warm pool) in an annual mean of 176 (197) W m−2. The effects of aerosols are included in three of the authors’ datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So↓ by 15–20 W m−2 over land and 5–10 W m−2 over the oceans. Model differences in cloud cover contribute to differences in So↓ between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Air pollution mitigation and global dimming: a challenge to agriculture under changing climate;Climate Change and Crop Stress;2022

2. Index;Climate Analysis;2019-01-17

3. Glossary;Climate Analysis;2019-01-17

4. Components of the Mean Water Budget;Climate Analysis;2019-01-17

5. Preliminary Examination of the Data;Climate Analysis;2019-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3