Revisiting the Global Energy Budget Dynamics with a Multivariate Earth Energy Balance Model to Account for the Warming Pattern Effect

Author:

Meyssignac Benoit1ORCID,Guillaume-Castel Robin1,Roca Rémy1

Affiliation:

1. a LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France

Abstract

Abstract Climate feedbacks are sensitive to the geographical distribution of sea surface temperature (SST). This sensitivity, called the pattern effect, affects the amplitude of the Earth radiative response to anomalies in global mean surface temperature (GMST) and thus is essential in shaping the global energy budget dynamics. Zero-dimensional energy balance models (EBMs) are the simplest representation of the global energy budget dynamics. Many only depend on GMST anomalies and cannot account for the pattern effect explicitly. In EBMs, the pattern effect leads to apparent variations of the global climate feedback parameter λ. Assuming a variable λ in EBMs enables them to more accurately reproduce AOGCM simulations of the GMST anomalies but it leads to variations in λ of >+15%. These large variations mean λ is not a constant and the Taylor expansion underpinning EBMs’ formulation does not hold, casting doubts on the physical grounding of such EBMs. Here we propose a new EBM based on a multivariate linear Earth radiative response, which depends on both the GMST and the surface warming pattern. The resulting multilinear EBM accurately reproduces AOGCM simulations of anomalies in Earth radiative response and GMST under abrupt 4xCO2 forcing. When interpreted in terms of variable λ, the multivariate EBM leads to small variations in λ that are physically consistent with the underpinning Taylor expansion. We analyze with the multivariate framework the variations of the planetary heat uptake N as a function of the GMST and the pattern of warming through a 3D generalization of the Gregory plot. We show that the apparent nonlinear behavior of the radiative response of the Earth against GMST seen in classical monovariate EBMs (and in classical Gregory plots) can actually be explained by a bilinear dependance of the radiative response of the Earth on the GMST and the pattern of warming. The multivariate EBM further provides an explicit dependence of the global energy budget on the pattern of warming and on the climate state. It has important consequences on the expression of the climate sensitivity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming;Andrews, T.,2018

2. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models;Andrews, T.,2015

3. Accounting for changing temperature patterns increases historical estimates of climate sensitivity;Andrews, T.,2018

4. Effective radiative forcing in a GCM with fixed surface temperatures;Andrews, T.,2021

5. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks;Armour, K. C.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3