Control of Low-Level Wind on the Diurnal Cycle of Tropical Coastal Precipitation

Author:

Aoki Shunsuke1,Shige Shoichi1

Affiliation:

1. a Graduate School of Science, Kyoto University, Kyoto, Japan

Abstract

Abstract To understand how coastal precipitation is controlled by the low-level background wind, we performed comprehensive analysis using the 17-yr observations of the TRMM PR over the entire region of the tropics. We classified the data according to the direction (onshore or offshore) and strength of the cross-shore wind. Under weak winds, the contribution of the diurnal cycle to total precipitation is large, indicating that thermally forced precipitation with a symmetrical propagation pattern with opposite sign across the coastline is dominant. As the background wind strengthens, the contribution of the diurnal cycle reduces owing to the predominance of mechanical forcing; however, the effect of the diurnal cycle remains nonnegligible with an asymmetrical propagation pattern across the coastline. Using the linear theory of the sea–land-breeze circulation, we demonstrated that the difference in propagation is attributable to gravity waves excited by the land–ocean surface heating difference. Under weak winds, symmetrical diurnal phase propagation is caused by the two symmetrical modes of landward and seaward gravity waves. Under stronger background winds, in addition to the Doppler-shifted landward and seaward modes, waves propagating toward the upwind side in the flow-relative frame but with slow group velocity are advected to the downwind near the coastline, forming another mode that moves slowly in the downwind direction. The superposition of the three modes leads to asymmetrical propagation of precipitation with varying phase speed depending on the distance from the coastline.

Funder

JSPS KAKENHI

JST, the establishment of university fellowships toward the creation of science technology innovation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference61 articles.

1. Large precipitation gradients along the south coast of Alaska revealed by spaceborne radars;Aoki, S.,2021

2. Formation of nocturnal offshore rainfall near the west coast of Sumatra: Land breeze or gravity wave?;Bai, H.,2021

3. Global detection and analysis of coastline-associated rainfall using an objective pattern recognition technique;Bergemann, M.,2015

4. Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition;Chang, C.-P.,2005

5. Assessing biases and climate implications of the diurnal precipitation cycle in climate models;Christopoulos, C.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3