Declining Geoengineering Efficacy Caused by Cloud Feedbacks in Transient Solar Dimming Experiments

Author:

Virgin John G.1ORCID,Fletcher Christopher G.1

Affiliation:

1. a Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract Solar radiation management (SRM) with injections of aerosols into the stratosphere has emerged as a research area of focus with the potential to cool the planet. However, the amount of SRM required to achieve a given level of cooling, and how this relationship evolves in response to increasing greenhouse gas emissions, remains uncertain. Here, we explore the evolution of solar dimming efficacy over time by defining and quantifying a new SRM feedback term, which is analogous to conventional radiative feedbacks. Using Earth system model simulations that dynamically adjust the amount of insolation to offset global mean warming from increasing CO2, we find that positive SRM feedbacks decrease global planetary albedo and diminish the efficacy of solar dimming. Physically, the decrease in albedo is primarily due to reductions in optically thick tropical cloud fraction in the boundary layer and midtroposphere, which is driven by a drying and destabilization of the tropical mid- to lower troposphere. These results offer an energetic explanation for reduced cloud fraction commonly observed in idealized SRM experiments, as well as reaffirm the need to understand the troposphere response, particularly from clouds, in realizable geoengineering experiments and their potential to feed back onto SRM efficacy. Significance Statement The goal of this study is to understand how the effectiveness of solar geoengineering may evolve over time. Using a climate model with the ability to directly tune the amount of incoming sunlight, we explore the potential for feedback loops in the climate system to diminish or amplify the desired effect of solar tuning, which is to offset greenhouse gas–induced warming. For this climate model and this solar geoengineering proxy, in particular, we find that feedback loops reduce Earth’s albedo and therefore diminish the desired effect of turning down the sun over time. This study lays the groundwork for understanding potential feedback loops in climate model simulations that represent solar geoengineering in a more realistic way.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference69 articles.

1. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models;Andrews, T.,2012

2. COSP: Satellite simulation software for model assessment;Bodas-Salcedo, A.,2011

3. Quasi-additivity of the radiative effects of marine cloud brightening and stratospheric sulfate aerosol injection;Boucher, O.,2017

4. An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models;Chung, E.-S.,2015

5. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?;Crutzen, P. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3