Investigating Atmospheric Responses to and Mechanisms Governing North Atlantic Sea Surface Temperatures over 10-Year Periods

Author:

Gu Qinxue1,Gervais Melissa12,Maroon Elizabeth3,Kim Who M.4,Danabasoglu Gokhan4,Castruccio Frederic4

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b The Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, Pennsylvania

3. c Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

4. d National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract North Atlantic sea surface temperature (SST) variability plays a critical role in modulating the climate system. However, characterizing patterns of North Atlantic SST variability and diagnosing the associated mechanisms is challenging because they involve coupled atmosphere–ocean interactions with complex spatiotemporal relationships. Here we address these challenges by applying a time-evolving self-organizing map approach to a long preindustrial coupled control simulation and identify a variety of 10-yr spatiotemporal evolutions of winter SST anomalies, including but not limited to those associated with the North Atlantic Oscillation–Atlantic multidecadal variability (NAO–AMV)-like interactions. To assess mechanisms and atmospheric responses associated with various SST spatiotemporal evolutions, composites of atmospheric and oceanic variables associated with these evolutions are investigated. Results show that transient-eddy activities and atmospheric circulation responses exist in almost all the evolutions that are closely correlated to the details of the SST pattern. In terms of the mechanisms responsible for generating various SST evolutions, composites of ocean heat budget terms demonstrate that contributions to upper-ocean temperature tendency from resolved ocean advection and surface heat fluxes rarely oppose each other over 10-yr periods in the subpolar North Atlantic. We further explore the potential for predictability for some of these 10-yr SST evolutions that start with similar states but end with different states. However, we find that these are associated with abrupt changes in atmospheric variability and are unlikely to be predictable. In summary, this study broadly investigates the atmospheric responses to and the mechanisms governing the North Atlantic SST evolutions over 10-yr periods. Significance Statement Climate variability in the North Atlantic Ocean has wide-ranging impacts on global and regional climate. However, the processes involved include interactions between the ocean and atmosphere that vary across both space and time, making it challenging to characterize and predict. Using a novel machine learning approach, this study identifies various time evolutions of North Atlantic sea surface temperature patterns over 10-yr periods. This includes evolutions with similar start states but different trajectories, which have important implications for predictability. Furthermore, we investigate the mechanisms responsible for these evolutions and how different sea surface temperature patterns affect atmospheric circulation through small-scale atmospheric disturbances. These new insights into the complex ocean–atmosphere interactions over time are critical for improving decadal prediction skill.

Funder

Climate Program Office

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference94 articles.

1. Winter-to-winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies;Alexander, M. A.,2001

2. Decadal predictability of North Atlantic blocking and the NAO;Athanasiadis, P. J.,2020

3. Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble;Bellomo, K.,2018

4. Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9.

5. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6;Boer, G. J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3