Contextualizing Polarimetric Retrievals of Boundary Layer Height Using State-of-the-Art Boundary Layer Profiling

Author:

Carlin Jacob T.12ORCID,Smith Elizabeth N.23,Giannakopoulos Katherine3

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Knowledge about the depth of the planetary boundary layer (PBL) is crucial for a variety of applications, but direct observations of PBL depth are spatiotemporally sparse. Recent studies have proposed using operational dual-polarization weather radars to observe the evolution of PBL depth by capitalizing on unique differential reflectivity (ZDR) signatures of Bragg scatter at the top of the PBL. While this approach appears promising and cost-effective, uncertainties remain about the representativeness of these estimates and how its efficacy may vary by geography and climatology. To address these outstanding uncertainties, this study compares collocated observations collected from two WSR-88D radars and two state-of-the-art mobile boundary layer profiling systems and evaluates the proposed methodology over the full diurnal cycle. Results indicate good overall correspondence between the profiling- and radar-based PBL depth estimates, with an abrupt divergence during the early evening transition and large discrepancies overnight. Relatively large root-mean-square-deviations (RMSDs) coupled with small biases match expectations when comparing spatially averaged data with point observations during PBL growth, which capture frequent fluctuations. A qualitative examination of the radar data reveals signatures of elevated residual layers, clouds, and ground clutter, all of which can obfuscate the desired surface-based PBL signal but which may have their own utility. The prominence of the Bragg scatter signal is found to be correlated with the observed moisture gradient at the top of the PBL, reflecting climatological variability that should be considered. These findings motivate further work to improve the automated detection of Bragg scatter layers from polarimetric radar data. Significance Statement Knowledge of the height of the planetary boundary layer matters for weather forecasting, air quality, and renewable energy production. Currently, boundary layer height measurements are taken at select locations twice a day. However, a method to use the existing national network of polarimetric weather radars for this purpose has been proposed. This work evaluates this method against specialized boundary layer measurements. The results show that the method is generally reliable during the daytime and could be used for a variety of applications including climatologies and model evaluation. There remain a number of situational caveats, including residual turbulence, clouds/precipitation, ground clutter, and certain meteorological environments, that may require modification of the approach and need to be considered in future work.

Funder

NOAA Research

Publisher

American Meteorological Society

Reference56 articles.

1. Boundary layer and mesoscale structure over Lake Michigan during a wintertime cold air outbreak;Agee, E. M.,1990

2. Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler;Angevine, W. M.,1994

3. Convective boundary layer depth estimation from S-band dual-polarization radar;Banghoff, J. R.,2018

4. Solutions for improving the radar refractivity measurement by taking operational constraints into account;Besson, L.,2013

5. Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations;Bianco, S.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3