Micrometeorological Aspects of Spraying within a Surface Inversion

Author:

Grace Warwick1,Tepper Graeme2

Affiliation:

1. a Grace Research Network, Adelaide, South Australia, Australia

2. b MicroMeteorological Research and Educational Services, Melbourne, Victoria, Australia

Abstract

AbstractPesticide applications during surface inversions can lead to spray drift causing severe damage up to several kilometers off-target. Current regulations in Australia prohibit spray application of certain agricultural chemicals when hazardous surface inversions exist. This severely limits spray opportunities. Surface inversions can be classified as weakly or strongly stable. In the weakly stable case, moderate to strong turbulent mixing is not supportive of long-distance concentrated drift. In the very stable case, weak turbulent mixing can support the transport of high concentrations of fine material over long distances. A review of the literature and our analyses indicate that if the turbulence, as measured by the standard deviation of the vertical wind speed σw, is greater than about 0.2 m s−1 then turbulence-driven mixing and dispersion is moderate to strong and conversely if σw is less than about 0.2 m s−1 then turbulence-driven mixing and dispersion is weaker (an order of magnitude). The concept of maximum downward heat flux as a natural division between the regimes is applied within Monin–Obukhov stability theory, and it is shown that the observed mean σw of 0.2 m s−1 aligns with the ridge line of maximum heat flux in stable conditions. The level of turbulence in the weakly stable regime is comparable to the turbulence typically observed in near-neutral conditions that are recommended under current guidelines as suitable for spraying and is therefore seen as an acceptable prerequisite to avoid nondispersive spraying conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3