Three-Dimensional Structure and Evolution of the Vertical Velocity and Divergence Fields in the MJO

Author:

Adames Ángel F.1,Wallace John M.1

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Abstract

Abstract The features in the planetary-scale wind field that shape the MJO-related vertical velocity field are examined using the linear analysis protocol based on the daily global velocity potential field described in a companion paper, augmented by a compositing procedure that yields a more robust and concise description of the prevalent patterns over the Indo-Pacific warm pool sector (60°E–180°). The analysis elucidates the structural elements of the planetary-scale wind field that give rise to the characteristic “swallowtail” shape of the region of enhanced rainfall and the “bottom up” evolution of the vertical velocity profile from one with a shallow peak on the eastern end of the region of enhanced rainfall to one with an elevated peak on the western end. These distinctive features of the vertical velocity field in the MJO reflect the juxtaposition of deep overturning circulation cells in the equatorial plane and much shallower frictionally driven cells in the meridional plane to the east and west of the regions of enhanced rainfall. The zonal overturning circulations determine the pattern of ∂u/∂x and the meridional overturning circulations determine the pattern of ∂υ/∂y in the divergence profiles. These features are at least qualitatively well represented by the Matsuno–Gill solution for the planetary wave response to a stationary equatorial heat source–sink dipole.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3