The Impact of Surface Drag on the Structure and Evolution of Surface Boundaries Associated with Tornadogenesis in Simulated Supercells

Author:

Jiang Qin1,Dawson Daniel T.1ORCID

Affiliation:

1. a Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana

Abstract

Abstract Surface boundaries in supercells have been suspected of being important in the arrangement and concentration of vorticity for the development and intensification of tornadoes, but there has been little attention given to the effects of the underlying surface roughness on their behavior. This study investigates the impact of surface drag on the structure and evolution of these boundaries, their associated distribution of near-surface vorticity, and tornadogenesis and maintenance. Comparisons between idealized simulations without and with drag introduced in the mature stage of the storm prior to tornadogenesis reveal that the inclusion of surface drag substantially alters the low-level structure, particularly with respect to the number, location, and intensity of surface convergence boundaries. Substantial drag-generated horizontal vorticity induces rotor structures near the surface associated with the convergence boundaries in both the forward and rear flanks of the storm. Stretching of horizontal vorticity and subsequent tilting into the vertical along the convergence boundaries lead to elongated positive vertical vorticity sheets on the ascending branch of the rotors and the opposite on the descending branch. The larger near-surface pressure deficit associated with the faster development of the near-surface cyclone when drag is active creates a downward dynamic vertical pressure gradient force that suppresses vertical growth, leading to a weaker and wider tornado detached from the surrounding convergence boundaries. A conceptual model of the low-level structure of the tornadic supercell is presented that focuses on the contribution of surface drag, with the aim of adding more insight and complexity to previous conceptual models. Significance Statement Tornado development is sensitive to near-surface processes, including those associated with front-like boundaries between regions of airflow within the parent storm. However, observations and theory are insufficient to understand these phenomena, and numerical simulation remains vital. In our simulations, we find that a change in a parameter that controls how much the near-surface winds are reduced by friction (or drag) can substantially alter the storm behavior and tornado potential. We investigate how surface drag affects the low-level storm structure, the distribution of regions of near-surface rotation, and the development of tornadoes within the simulation. Our results provide insight into the role of surface drag and lead to an improved conceptual model of the near-surface structure of a tornadic storm.

Funder

NASA

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference74 articles.

1. Comments on “Critical test of the validity of Monin–Obukhov similarity during convective conditions.”;Andreas, E. L,2002

2. An assessment of low-level baroclinity and vorticity within a simulated supercell;Beck, J.,2013

3. Mesocyclone evolution and tornadogenesis: Some observations;Brandes, E. A.,1978

4. A benchmark simulation for moist nonhydrostatic numerical models;Bryan, G. H.,2002

5. Tilting of horizontal shear vorticity and the development of updraft rotation in supercell thunderstorms;Dahl, J. M. L.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3