Characteristics of Summer Stationary Waves in the Northern Hemisphere

Author:

Chen Tsing-Chang1

Affiliation:

1. Atmospheric Science Program, Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

Abstract Summer stationary waves in the Northern Hemisphere are separated by a midlatitude transition zone into the subtropical monsoon regime with a vertical phase reversal and the subarctic regime with a vertically uniform structure. The dynamics and maintenance mechanism of the subtropical stationary waves have been investigated in the context of monsoon circulation. Depicted in terms of streamfunction with 40-yr ECMWF Re-Analysis (ERA-40), the dynamic characteristics of stationary waves in the transition zone and the subarctic region are thus the focus of this study. The dynamics and maintenance mechanism of these waves were explored with the streamfunction budget and the velocity potential maintenance equations. Stationary waves across the transition region consist of anticyclonic shear zones over the North Pacific and North Atlantic and a cyclonic shear zone in east Eurasia. These transition elements are linked to subtropical oceanic anticyclones and continental thermal lows. At high latitudes, a three-wave structure emerges with a weak central Eurasian trough aligned with two deep oceanic troughs. A longitudinal phase change occurs across the transition zone, but the direction of the east–west circulation associated with the transitional anticyclonic (cyclonic) zone is the same as that of the subtropical trough (high). This phase change is caused by the dynamics transition from the Sverdrup regime to the Rossby regime because of the increasing importance of relative vorticity advection. At high latitudes, relative vorticity advection becomes the dominant dynamic process in the upper atmosphere, but is negligible in the lower troposphere. This subarctic dynamic regime results in the vertically uniform structure of stationary waves. These waves are maintained by in situ diabatic heating (cooling) ahead of three subarctic troughs (ridges). Thus, the structure of the east–west circulation of subarctic stationary waves is opposite to that of subtropical stationary waves. These findings not only disclose more detailed structure and dynamics of summer stationary waves, but also provide a more complete basis to validate summer climate simulations and to search for the cause of interannual variation in summer climate.

Publisher

American Meteorological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3