A Three-Dimensional Hail Trajectory Clustering Technique

Author:

Adams-Selin Rebecca D.1ORCID

Affiliation:

1. a Verisk Atmospheric and Environmental Research, Bellevue, Nebraska

Abstract

Abstract Recent advances in hail trajectory modeling regularly produce datasets containing millions of hail trajectories. Because hail growth within a storm cannot be entirely separated from the structure of the trajectories producing it, a method to condense the multidimensionality of the trajectory information into a discrete number of features analyzable by humans is necessary. This article presents a three-dimensional trajectory clustering technique that is designed to group trajectories that have similar updraft-relative structures and orientations. The new technique is an application of a two-dimensional method common in the data mining field. Hail trajectories (or “parent” trajectories) are partitioned into segments before they are clustered using a modified version of the density-based spatial applications with noise (DBSCAN) method. Parent trajectories with segments that are members of at least two common clusters are then grouped into parent trajectory clusters before output. This multistep method has several advantages. Hail trajectories with structural similarities along only portions of their length, e.g., sourced from different locations around the updraft before converging to a common pathway, can still be grouped. However, the physical information inherent in the full length of the trajectory is retained, unlike methods that cluster trajectory segments alone. The conversion of trajectories to an updraft-relative space also allows trajectories separated in time to be clustered. Once the final output trajectory clusters are identified, a method for calculating a representative trajectory for each cluster is proposed. Cluster distributions of hailstone and environmental characteristics at each time step in the representative trajectory can also be calculated. Significance Statement To understand how a storm produces large hail, we need to understand the paths that hailstones take in a storm when growing. We can simulate these paths using computer models. However, the millions of hailstones in a simulated storm create millions of paths, which is hard to analyze. This article describes a machine learning method that groups together hailstone paths based on how similar their three-dimensional structures look. It will let hail scientists analyze hailstone pathways in storms more easily, and therefore better understand how hail growth happens.

Funder

Directorate for Geosciences

Planetary Science Division

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Forecasting hail using a one-dimensional hail growth model within WRF;Adams-Selin, R. D.,2016

2. Evolution of WRF-HAILCAST during the 2014-16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments;Adams-Selin, R. D.,2019

3. Just what is “good”? Musings on hail forecast verification through evaluation of FV3-HAILCAST hail forecasts;Adams-Selin, R. D.,2023

4. Aggarwal, C. C., 2015: Data Mining: The Textbook. Vol. 1. Springer, 734 pp.

5. Automated identification of characteristic droplet size distributions in stratocumulus clouds utilizing a data clustering algorithm;Allwayin, N.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3