Advanced Tropical Cyclone Prediction Using the Experimental Global ECMWF and Operational Regional COAMPS-TC Systems

Author:

Majumdar Sharanya J.12ORCID,Magnusson Linus2,Bechtold Peter2,Bidlot Jean Raymond2,Doyle James D.3

Affiliation:

1. a University of Miami, Miami, Florida

2. b European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

3. c U.S. Naval Research Laboratory, Monterey, California

Abstract

Abstract Structure and intensity forecasts of 19 tropical cyclones (TCs) during the 2020 Atlantic hurricane season are investigated using two NWP systems. An experimental 4-km global ECMWF model (EC4) with upgraded moist physics is compared with a 9-km version (EC9) to evaluate the influence of resolution. EC4 is then benchmarked against the 4-km regional COAMPS–Tropical Cyclones (COAMPS-TC) system (CO4) to compare systems with similar resolutions. EC4 produced stronger TCs than EC9, with a >30% reduction of the maximum wind speed bias in EC4, resulting in lower forecast errors. However, both ECMWF predictions struggled to intensify initially weak TCs, and the radius of maximum winds (RMW) was often too large. In contrast, CO4 had lower biases in central pressure, maximum wind speed, and RMW. Regardless, minimal statistical differences between CO4 and EC4 intensity errors were found for ≥36-h forecasts. Rapid intensification cases yielded especially large intensity errors. CO4 produced superior forecasts of RMW, together with an excellent pressure–wind relationship. Differences in the results are due to contrasting physics and initialization schemes. ECMWF uses global data assimilation with no special treatment of TCs, whereas COAMPS-TC constructs a vortex for TCs with initial intensity ≥55 kt (∼28 m s−1) based on data provided by forecasters. Two additional ECMWF experiments were conducted. The first yielded improvements when the drag coefficient was reduced at high wind speeds, thereby weakening the coupling between the low-level winds and the surface. The second produced overly intense TCs when explicit deep convection was used, due to unrealistic mid–upper-tropospheric heating. Significance Statement Improved forecasts of tropical storms and hurricanes depend on advances in computer weather models. We tested an experimental high-resolution (4 km) version of the global ECMWF model against its 9-km counterpart to evaluate the influence of resolution on storm position and intensity. We also compared this with the 4-km U.S. Navy model, which is designed for tropical storms and hurricanes. Over a 3-month period during the active 2020 Atlantic hurricane season, we found that increasing the horizontal resolution improved intensity forecasts. The Navy model forecasts were superior for the radius of maximum winds and had lower intensity biases. Two additional experiments with the ECMWF model revealed the importance of simulating air–sea interaction in high winds and current challenges with explicitly simulating deep thunderstorm clouds in their system.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference65 articles.

1. High-definition hurricanes: Improving forecasts with storm-following nests;Alaka, G. J., Jr,2022

2. Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation;Ardhuin, F.,2010

3. Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships;Bao, J.-W.,2012

4. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales;Bechtold, P.,2008

5. Representing equilibrium and non-equilibrium convection in large-scale models;Bechtold, P.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3