Numerical prediction of the stress state in CFRP induced by installing a blind rivet nut

Author:

Van de Velde Arne,Coppieters Sam,Debruyne Dimitri

Abstract

The present paper offers a FE modeling strategy to predict the stress state in carbon fiber reinforced plastic (CFRP) plate material after installing a Blind Rivet Nut (BRN). In industry, a BRN is a permanent mechanical fastener used to equip plate material with a threaded part. Analogue to the installing process of the more common blind rivet, the BRN deforms plastically in such a way a counter head is formed on the underside of the plate. Simultaneously, the upper side of the deformation chamber expands in the radial direction creating an interference fit. The interference fit together with the counter head units the nut to the plate. However, the high contact forces between the BRN and the plate often cause damage in the CFRP material compromising the integrity of the joint. The latter observation implies that while setting a BRN in CFRP, the detrimental contact forces must be controlled to guarantee a qualitative joint. The necessary understanding of the stress distribution in the plate material is numerically investigated in two steps. In the first step, a computational efficient axisymmetric model is used to reveal the contract pressure between the BRN and the plate during the setting process. In the second step, the contact pressures are transferred to a 3D model of the plate. In this stage, the orthotropic properties of the composite are assigned to the plate material and an adequate failure criterion is adopted. The result is compared to a full 3D model using the Tsai – Wu failure criterion.

Publisher

University of Liege

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3