Non-Newtonian Rheology of Human Blood - Effect of Fibrinogen Deduced by "Subtraction"

Author:

MERRILL EDWARD W.1,COKELET GILES C.1,BRITTEN ANTHONY1,WELLS ROE E.1

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge; Massachusetts General Hospital and Peter Bent Brigham Hospital, Boston, Massachusetts

Abstract

A study of the rheological properties of human blood, from donors in normal health, was carried out by means of a coaxial cylinder viscometer designed to measure very small levels of stress under conditions of "creeping" flow. It was found that under these conditions of measurement the rheological properties could be conveniently presented by plotting the square root of shear stress against square root of shear rate. For normal blood, a nearly linear relation is found on such a plot, and the intercept on the stress axis at zero shear rate represents the square root of yield stress, separate determination of which is made by other means. Similar plots for (i) defibrinated blood and (ii) suspensions of red cells in isotonic saline solution reveal no yield stress. Thus it is concluded that fibrinogen is essential for the existence of yield stress in human blood. Furthermore, the approximate linearity, for normal blood, of the square root of shear stress with square root of shear rate, and the yield stress intercept, are of great interest inasmuch as mathematically identical relations ensue according to an equation developed by Casson based on a physical model in which the elementary particles of a suspension are capable of reversible association into rod-like structures, the length of which is controlled by the shear rate. It is of interest to consider the Casson model in the light of rouleaux formation and the relation of fibrinogen to rouleaux formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3