Smooth Muscle Cell Phenotypic Transition Associated With Calcification

Author:

Steitz Susie A.1,Speer Mei Y.1,Curinga Gabrielle1,Yang Hsueh-Ying1,Haynes Paul1,Aebersold Ruedi1,Schinke Thorsten1,Karsenty Gerard1,Giachelli Cecilia M.1

Affiliation:

1. From the Departments of Bioengineering (S.A.S., M.Y.S., H.-Y.Y., C.M.G.), Pathology (G.C.), and Molecular Biotechnology (P.H., R.A.), University of Washington, Seattle, Wash; and the Department of Molecular and Human Genetics (T.S., G.K.), Baylor College of Medicine, Houston, Tex. Present address for P.H. is Novartis Agricultural Discovery Institute, San Diego, Calif.

Abstract

Bovine aortic smooth muscle cell (BASMC) cultures undergo mineralization on addition of the organic phosphate donor, β-glycerophosphate (βGP). Mineralization is characterized by apatite deposition on collagen fibrils and the presence of matrix vesicles, as has been described in calcified vascular lesions in vivo as well as in bone and teeth. In the present study, we used this model to investigate the molecular mechanisms driving vascular calcification. We found that BASMCs lost their lineage markers, SM22α and smooth muscle α-actin, within 10 days of being placed under calcifying conditions. Conversely, the cells gained an osteogenic phenotype as indicated by an increase in expression and DNA-binding activity of the transcription factor, core binding factor α1 (Cbfa1). Moreover, genes containing the Cbfa1 binding site, OSE2, including osteopontin, osteocalcin, and alkaline phosphatase were elevated. The relevance of these in vitro findings to vascular calcification in vivo was further studied in matrix GLA protein null (MGP −/− ) mice whose arteries spontaneously calcify. We found that arterial calcification was associated with a similar loss in smooth muscle markers and a gain of osteopontin and Cbfa1 expression. These data demonstrate a novel association of vascular calcification with smooth muscle cell phenotypic transition, in which several osteogenic proteins including osteopontin, osteocalcin, and the bone determining factor Cbfa1 are gained. The findings suggest a positive role for SMCs in promoting vascular calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3