Bone Morphogenic Protein Antagonists Are Coexpressed With Bone Morphogenic Protein 4 in Endothelial Cells Exposed to Unstable Flow In Vitro in Mouse Aortas and in Human Coronary Arteries

Author:

Chang Kyunghwa1,Weiss Daiana1,Suo Jin1,Vega J. David1,Giddens Don1,Taylor W. Robert1,Jo Hanjoong1

Affiliation:

1. From the Wallace H. Coulter Department of Biomedical Engineering (K.C., J.S., D.G., W.R.T., H.J.), Georgia Institute of Technology and Emory University, Atlanta, Ga, and the Department of Surgery (J.D.V.), and Division of Cardiology (D.W., W.R.T., H.J.), Emory University, Atlanta, Ga.

Abstract

Background— Exposure to disturbed flow, including oscillatory shear stress, stimulates endothelial cells (ECs) to produce bone morphogenic protein (BMP) 4, which in turn activates inflammation, a critical atherogenic step. BMP activity is regulated by the level of BMP antagonists. Until now it was not known whether shear also regulates the expression of BMP antagonists and whether they play a role in EC pathophysiology. Methods and Results— BMP antagonists follistatin, noggin, and matrix Gla protein were expressed in cultured bovine and human arterial ECs. Surprisingly, oscillatory shear stress increased expression of the BMP antagonists in ECs, whereas unidirectional laminar shear decreased such expression. Immunohistochemical studies with mouse aortas showed data consistent with in vitro findings: Only ECs in the lesser curvature exposed to disturbed flow, but not those in the greater curvature and straight arterial regions exposed to undisturbed flow, showed coexpression of BMP4 and the BMP antagonists. Similarly, in human coronary arteries, expression of BMP4 and BMP antagonists in ECs positively correlated with the severity of atherosclerosis. Monocyte adhesion induced by oscillatory shear stress was inhibited by knockdown of BMP4 or treatment with recombinant follistatin or noggin, whereas it was increased by knockdown of follistatin and/or noggin. Conclusions— The present results suggest that ECs coexpress BMP antagonists along with BMP4 in an attempt to minimize the inflammatory response by oscillatory shear stress as part of a negative feedback mechanism. The balance between the agonist, BMP4, and its antagonists may play an important role in the overall control of inflammation and atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3