PDZ-Binding Kinase, a Novel Regulator of Vascular Remodeling in Pulmonary Arterial Hypertension

Author:

Bordan Zsuzsanna1ORCID,Batori Robert K.1ORCID,Haigh Stephen1,Li Xueyi2,Meadows Mary Louise3,Brown Zach L.1ORCID,West Madison A.1ORCID,Dong Kunzhe1ORCID,Han Weihong3,Su Yunchao3ORCID,Ma Qian1ORCID,Huo Yuqing1ORCID,Zhou Jiliang3ORCID,Abdelbary Mahmoud4,Sullivan Jennifer C.5ORCID,Weintraub Neal L.1ORCID,Stepp David W.1ORCID,Chen Feng6ORCID,Barman Scott A.3,Fulton David J.R.13

Affiliation:

1. Vascular Biology Center (Z.B., R.K.B., S.H., Z.L.B., M.A.W., Q.M., Y.H., N.L.W., D.W.S., D.J.R.F.), Medical College of Georgia, Augusta University.

2. Departments of Ophthalmology and Medicine, Stanford University School of Medicine, Palo Alto, CA (X.L.).

3. Department of Pharmacology and Toxicology (M.L.M., W.H., Y.S., J.Z., S.A.B., D.J.R.F.), Medical College of Georgia, Augusta University.

4. School of Medicine, Oregon Health & Science University, Portland (M.A.).

5. Immunology Center of Georgia (K.D.), Department of Physiology (J.C.S.), Medical College of Georgia, Augusta University.

6. Department of Forensic Medicine, Nanjing Medical University, China (F.C.).

Abstract

BACKGROUND: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS: Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS: Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS: PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3