ZEB2 Shapes the Epigenetic Landscape of Atherosclerosis

Author:

Cheng Paul1,Wirka Robert C.2,Shoa Clarke Lee1ORCID,Zhao Quanyi1,Kundu Ramendra1,Nguyen Trieu1,Nair Surag3,Sharma Disha1ORCID,Kim Hyun-jung1ORCID,Shi Huitong1,Assimes Themistocles1ORCID,Brian Kim Juyong1ORCID,Kundaje Anshul3ORCID,Quertermous Thomas1ORCID

Affiliation:

1. Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA (P.C., L.S.C., Q.Z., R.K., T.N., D.S., H.-j.K., H.S., T.A., J.B.K., T.Q.).

2. Division of Cardiology, Departments of Medicine and Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina, Chapel Hill (R.C.W.).

3. Department of Genetics, Stanford University School of Medicine, CA (S.N., A.K.).

Abstract

Background: Smooth muscle cells (SMCs) transition into a number of different phenotypes during atherosclerosis, including those that resemble fibroblasts and chondrocytes, and make up the majority of cells in the atherosclerotic plaque. To better understand the epigenetic and transcriptional mechanisms that mediate these cell state changes, and how they relate to risk for coronary artery disease (CAD), we have investigated the causality and function of transcription factors at genome-wide associated loci. Methods: We used CRISPR-Cas 9 genome and epigenome editing to identify the causal gene and cells for a complex CAD genome-wide association study signal at 2q22.3. Single-cell epigenetic and transcriptomic profiling in murine models and human coronary artery smooth muscle cells were used to understand the cellular and molecular mechanism by which this CAD risk gene exerts its function. Results: CRISPR-Cas 9 genome and epigenome editing showed that the complex CAD genetic signals within a genomic region at 2q22.3 lie within smooth muscle long-distance enhancers for ZEB2 , a transcription factor extensively studied in the context of epithelial mesenchymal transition in development of cancer. Zeb2 regulates SMC phenotypic transition through chromatin remodeling that obviates accessibility and disrupts both Notch and transforming growth factor β signaling, thus altering the epigenetic trajectory of SMC transitions. SMC-specific loss of Zeb2 resulted in an inability of transitioning SMCs to turn off contractile programing and take on a fibroblast-like phenotype, but accelerated the formation of chondromyocytes, mirroring features of high-risk atherosclerotic plaques in human coronary arteries. Conclusions: These studies identify ZEB2 as a new CAD genome-wide association study gene that affects features of plaque vulnerability through direct effects on the epigenome, providing a new therapeutic approach to target vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3