Antihypertrophic Memory After Regression of Exercise-Induced Physiological Myocardial Hypertrophy Is Mediated by the Long Noncoding RNA Mhrt779

Author:

Lin Hairuo1,Zhu Yingqi1,Zheng Cankun1,Hu Donghong1,Ma Siyuan1,Chen Lin1,Wang Qiancheng1,Chen Zhenhuan1,Xie Jiahe1,Yan Yi12,Huang Xiaobo1,Liao Wangjun3,Kitakaze Masafumi14,Bin Jianping15,Liao Yulin156ORCID

Affiliation:

1. Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.Z., C.Z., D.H., S.M., L.C., Q.W., Z.C., J.X., Y.Y., X.H., M.K., J.B., Y.L.).

2. Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affliated Hospital of Guangzhou Medical University, Guangzhou, China (Y.Y.).

3. Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou Guangdong, China (W.L.).

4. Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan (M.K.).

5. National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China (J.B., Y.L.).

6. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China (Y.L.).

Abstract

Background: Exercise can induce physiological myocardial hypertrophy (PMH), and former athletes can live 5 to 6 years longer than nonathletic controls, suggesting a benefit after regression of PMH. We previously reported that regression of pathological myocardial hypertrophy has antihypertrophic effects. Accordingly, we hypothesized that antihypertrophic memory exists even after PMH has regressed, increasing myocardial resistance to subsequent pathological hypertrophic stress. Methods: C57BL/6 mice were submitted to 21 days of swimming training to develop PMH. After termination of exercise, PMH regressed within 1 week. PMH regression mice (exercise hypertrophic preconditioning [EHP] group) and sedentary mice (control group) then underwent transverse aortic constriction or a sham operation for 4 weeks. Cardiac remodeling and function were evaluated with echocardiography, invasive left ventricular hemodynamic measurement, and histological analysis. LncRNA sequencing, chromatin immunoprecipitation assay, and comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot were used to investigate the role of Mhrt779 involved in the antihypertrophic effect induced by EHP. Results: At 1 and 4 weeks after transverse aortic constriction, the EHP group showed less increase in myocardial hypertrophy and lower expression of the Nppa and Myh7 genes than the sedentary group. At 4 weeks after transverse aortic constriction, EHP mice had less pulmonary congestion, smaller left ventricular dimensions and end-diastolic pressure, and a larger left ventricular ejection fraction and maximum pressure change rate than sedentary mice. Quantitative polymerase chain reaction revealed that the long noncoding myosin heavy chain–associated RNA transcript Mhrt779 was one of the markedly upregulated lncRNAs in the EHP group. Silencing of Mhrt779 attenuated the antihypertrophic effect of EHP in mice with transverse aortic constriction and in cultured cardiomyocytes treated with angiotensin II, and overexpression enhanced the antihypertrophic effect. Using chromatin immunoprecipitation assay and quantitative polymerase chain reaction, we found that EHP increased histone 3 trimethylation (H3K4me3 and H3K36me3) at the a4 promoter of Mhrt779 . Comprehensive identification of RNA-binding proteins by mass spectrometry and Western blot showed that Mhrt779 can bind SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (Brg1) to inhibit the activation of the histone deacetylase 2 (Hdac2)/phosphorylated serine/threonine kinase (Akt)/phosphorylated glycogen synthase kinase 3β(p-GSK3β) pathway induced by pressure overload. Conclusions: Myocardial hypertrophy preconditioning evoked by exercise increases resistance to pathological stress via an antihypertrophic effect mediated by a signal pathway of Mhrt779 /Brg1/Hdac2/p-Akt/p-GSK3β

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3