G-Protein–Coupled Receptor Kinase 2–Mediated Desensitization of Adiponectin Receptor 1 in Failing Heart

Author:

Wang Yajing1,Gao Erhe1,Lau Wayne Bond1,Wang Yang1,Liu Gaizheng1,Li Jing-Jing1,Wang Xiaoliang1,Yuan Yuexing1,Koch Walter J.1,Ma Xin-Liang1

Affiliation:

1. From Department of Emergency Medicine (Y.W., W.B.L., Y.W., G.L., J.-J.L., X.W., Y.Y., X.-L.M.) and Center for Translational Medicine, Department of Medicine (X.-L.M.), Thomas Jefferson University, Philadelphia, PA; and Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.J.K.).

Abstract

Background— Phosphorylative desensitization of G-protein–coupled receptors contributes significantly to post–myocardial infarction (MI) remodeling and heart failure (HF). Here, we determined whether adiponectin receptors (AdipoRs) 1 and 2 (the 7-transmembrane domain–containing receptors mediating adiponectin functions) are phosphorylatively modified and functionally impaired after MI. Methods and Results— Post-MI HF was induced by coronary artery occlusion. Receptor phosphorylation, kinase expression, and adiponectin function were determined via in vivo, ex vivo, and in vitro models. AdipoR1 and AdipoR2 are not phosphorylated in the normal heart. However, AdipoR1 was significantly phosphorylated after MI, peaking at 7 days and remaining significantly phosphorylated thereafter. The extent of post-MI AdipoR1 phosphorylation positively correlated with the expression level of GPCR kinase (GRK) 2, the predominant GRK isoform upregulated in the failing heart. Cardiac-specific GRK2 knockout virtually abolished post-MI AdipoR1 phosphorylation, whereas virus-mediated GRK2 overexpression significantly phosphorylated AdipoR1 and blocked adiponectin metabolic-regulatory/anti-inflammatory signaling. Mass spectrometry identified serine-7, threonine-24, and threonine-53 (residues located in the n-terminal intracellular AdipoR1 region) as the GRK2 phosphorylation sites. Ex vivo experiments demonstrated that adenosine monophosphate–activated protein kinase activation and the anti–tumor necrosis factor-α effect of adiponectin were significantly inhibited in cardiomyocytes isolated from nonischemic area 7 days after MI. In vivo experiments demonstrated that acute adiponectin administration–induced cardiac GLUT4 translocation and endothelial nitric oxide synthase phosphorylation were blunted 7 days after MI. Continuous adiponectin administration beginning 7 days after MI failed to protect the heart from adverse remodeling and HF progression. Finally, cardiac-specific GRK2 knockdown restored the cardioprotective effect of adiponectin. Conclusion— AdipoR1 is phosphorylatively modified and desensitized by GRK2 in failing cardiomyocytes, contributing to post-MI remodeling and HF progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3