AdipoRon Attenuates Inflammation and Impairment of Cardiac Function Associated With Cardiopulmonary Bypass–Induced Systemic Inflammatory Response Syndrome

Author:

Jenke Alexander12ORCID,Yazdanyar Mariam12,Miyahara Shunsuke12,Chekhoeva Agunda12,Immohr Moritz Benjamin12,Kistner Julia12,Boeken Udo12,Lichtenberg Artur12ORCID,Akhyari Payam12

Affiliation:

1. Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany

2. Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany

Abstract

Background Cardiac surgery using cardiopulmonary bypass (CPB) frequently provokes a systemic inflammatory response syndrome, which is triggered by TLR4 (Toll‐like receptor 4) and TNF‐α (tumor necrosis factor α) signaling. Here, we investigated whether the adiponectin receptor 1 and 2 agonist AdipoRon modulates CPB‐induced inflammation and cardiac dysfunction. Methods and Results Rats underwent CPB with deep hypothermic circulatory arrest and were finally weaned from the heart‐lung machine. Compared with vehicle, AdipoRon application attenuated the CPB‐induced impairment of mean arterial pressure following deep hypothermic circulatory arrest. During the weaning and postweaning phases, heart rate and mean arterial pressure in all AdipoRon animals (7 of 7) remained stable, while cardiac rhythm was irretrievably lost in 2 of 7 of the vehicle‐treated animals. The AdipoRon‐mediated improvements of cardiocirculatory parameters were accompanied by increased plasma levels of IL (interleukin) 10 and diminished concentrations of lactate and K + . In myocardial tissue, AdipoRon activated AMP‐activated protein kinase (AMPK) while attenuating CPB‐induced degradation of nuclear factor κB inhibitor α (IκBα), upregulation of TNF‐α, IL‐1β, CCL2 (C‐C chemokine ligand 2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inducible nitric oxide synthase. Correspondingly, in cultured cardiac myocytes, cardiac fibroblasts, and vascular endothelial cells, AdipoRon activated AMPK, upregulated IL‐10, and attenuated activation of nuclear factor κB, as well as upregulation of TNF‐α, IL‐1β, CCL2, NADPH oxidase, and inducible nitric oxide synthase induced by lipopolysaccharide or TNF‐α. In addition, the treatment of cardiac myocytes with the AMPK activator 5‐aminoimidazole‐4‐carboxamide 1‐β‐D‐ribofuranoside resulted in a similar inhibition of lipopolysaccharide‐ and TNF‐α–induced inflammatory cell phenotypes as for AdipoRon. Conclusions Our observations indicate that AdipoRon attenuates CPB‐induced inflammation and impairment of cardiac function through AMPK‐mediated inhibition of proinflammatory TLR4 and TNF‐α signaling in cardiac cells and upregulation of immunosuppressive IL‐10.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3