LINC01278 Sponges miR‐500b‐5p to Regulate the Expression of ACTG2 to Control Phenotypic Switching in Human Vascular Smooth Muscle Cells During Aortic Dissection

Author:

Wang Weitie1ORCID,Liu Qing2ORCID,Wang Yong1,Piao Hulin1,Zhu Zhicheng1,Li Dan1,Wang Tiance1,Liu Kexiang1ORCID

Affiliation:

1. Department of Cardiovascular Surgery of the Second Hospital of Jilin University Changchun Jilin China

2. Graduate School of Medicine and Faculty of Medicine of the University of Tokyo Tokyo Japan

Abstract

Background Phenotypic switching in vascular smooth muscle cells (VSMCs) is involved in the pathogenesis of aortic dissection (AD). This study aims to explore the potential mechanisms of linc01278 during VSMC phenotypic switching. Methods and Results Twelve samples (6 AD and 6 control) were used for lncRNA, microRNA, and mRNA microarray analysis. We integrated the mRNA microarray data set with GSE52093 to determine the differentially expressed genes. Bioinformatic analysis, including Gene Expression Omnibus 2R, Venn diagram analysis, gene ontology, pathway enrichment, and protein–protein interaction networks were used to identify the target lncRNA, microRNA, and mRNA involved in AD. Subsequently, we validated the bioinformatics data using techniques in molecular biology in human tissues and VSMCs. Linc01278, microRNA‐500b‐5p, and ACTG2 played an important role in the vascular smooth muscle contraction pathway. Linc01278 and ACTG2 were downregulated and miR‐500b‐5p was upregulated in AD tissues. Molecular markers of VSMC phenotypic switching, including SM22α, SMA, calponin, and MYH11, were downregulated in AD tissues. Plasmid‐based overexpression and RNA interference‐mediated downregulation of linc01278 weakened and enhanced VSMC proliferation and phenotypic switching, respectively. Dual‐luciferase reporter assays confirmed that linc01278 regulated miR‐500b‐5p that directly targeted ACTG2 in HEK293T cells. Conclusions These data demonstrate that linc01278 regulates ACTG2 to control the phenotypic switch in VSMCs by sponging miR‐500b‐5p. This linc01278‐miR‐500b‐5p‐ACTG2 axis has a potential role in developing diagnostic markers and therapeutic targets for AD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3