Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals

Author:

Bishop Sanford P.1ORCID,Zhou Yang1ORCID,Nakada Yuji1ORCID,Zhang Jianyi1ORCID

Affiliation:

1. Department of Biomedical Engineering, School of Medicine, School of Engineering The University of Alabama at Birmingham AL

Abstract

Abstract The failure of adult cardiomyocytes to reproduce themselves to repair an injury results in the development of severe cardiac disability leading to death in many cases. The quest for an understanding of the inability of cardiac myocytes to repair an injury has been ongoing for decades with the identification of various factors which have a temporary effect on cell‐cycle activity. Fetal cardiac myocytes are continuously replicating until the time that the developing fetus reaches a stage of maturity sufficient for postnatal life around the time of birth. Recent reports of the ability for early neonatal mice and pigs to completely repair after the severe injury has stimulated further study of the regulators of the cardiomyocyte cell cycle to promote replication for the remuscularization of injured heart. In all mammals just before or after birth, single‐nucleated hyperplastically growing cardiomyocytes, 1X2N, undergo ≥1 additional DNA replications not followed by cytokinesis, resulting in cells with ≥2 nuclei or as in primates, multiple DNA replications (polyploidy) of 1 nucleus, 2X2(+)N or 1X4(+)N. All further growth of the heart is attributable to hypertrophy of cardiomyocytes. Animal studies ranging from zebrafish with 100% 1X2N cells in the adult to some strains of mice with up to 98% 2X2N cells in the adult and other species with variable ratios of 1X2N and 2X2N cells are reviewed relative to the time of conversion. Various structural, physiologic, metabolic, genetic, hormonal, oxygenation, and other factors that play a key role in the inability of post‐neonatal and adult myocytes to undergo additional cytokinesis are also reviewed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3