In Search of an Optimal Subset of ECG Features to Augment the Diagnosis of Acute Coronary Syndrome at the Emergency Department

Author:

Bouzid Zeineb1,Faramand Ziad23ORCID,Gregg Richard E.4ORCID,Frisch Stephanie O.52ORCID,Martin‐Gill Christian63,Saba Samir73ORCID,Callaway Clifton63,Sejdić Ervin1859,Al‐Zaiti Salah267ORCID

Affiliation:

1. Department of Electrical & Computer Engineering Swanson School of EngineeringUniversity of Pittsburgh PA

2. Department of Acute & Tertiary Care Nursing University of Pittsburgh PA

3. University of Pittsburgh Medical Center Pittsburgh PA

4. Advanced Algorithm Research Center Philips Healthcare Andover MA

5. Department of Biomedical Informatics at School of Medicine University of Pittsburgh PA

6. Department of Emergency Medicine University of Pittsburgh PA

7. Division of Cardiology University of Pittsburgh PA

8. Department of Bioengineering Swanson School of EngineeringUniversity of Pittsburgh PA

9. Intelligent Systems Program at School of Computing and Information University of Pittsburgh PA

Abstract

Background Classical ST‐T waveform changes on standard 12‐lead ECG have limited sensitivity in detecting acute coronary syndrome (ACS) in the emergency department. Numerous novel ECG features have been previously proposed to augment clinicians' decision during patient evaluation, yet their clinical utility remains unclear. Methods and Results This was an observational study of consecutive patients evaluated for suspected ACS (Cohort 1 n=745, age 59±17, 42% female, 15% ACS; Cohort 2 n=499, age 59±16, 49% female, 18% ACS). Out of 554 temporal‐spatial ECG waveform features, we used domain knowledge to select a subset of 65 physiology‐driven features that are mechanistically linked to myocardial ischemia and compared their performance to a subset of 229 data‐driven features selected by multiple machine learning algorithms. We then used random forest to select a final subset of 73 most important ECG features that had both data‐ and physiology‐driven basis to ACS prediction and compared their performance to clinical experts. On testing set, a regularized logistic regression classifier based on the 73 hybrid features yielded a stable model that outperformed clinical experts in predicting ACS, with 10% to 29% of cases reclassified correctly. Metrics of nondipolar electrical dispersion (ie, circumferential ischemia), ventricular activation time (ie, transmural conduction delays), QRS and T axes and angles (ie, global remodeling), and principal component analysis ratio of ECG waveforms (ie, regional heterogeneity) played an important role in the improved reclassification performance. Conclusions We identified a subset of novel ECG features predictive of ACS with a fully interpretable model highly adaptable to clinical decision support applications. Registration URL: https://www.clinicaltrials.gov ; Unique Identifier: NCT04237688.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3