SMAD3 Deficiency Promotes Inflammatory Aortic Aneurysms in Angiotensin II–Infused Mice Via Activation of iNOS

Author:

Tan Chek K.1,Tan Eddie H.1,Luo Baiwen2,Huang Charlotte L.2,Loo Joachim S.2,Choong Cleo2,Tan Nguan S.13

Affiliation:

1. School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore

2. School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore

3. Institute of Molecular and Cell Biology, Proteos A*STAR, Singapore

Abstract

Background Ninety percent of the patients carrying distinct SMAD3 mutations develop aortic aneurysms and dissections, called aneurysms‐osteoarthritis syndrome ( AOS ). However, the etiology and molecular events downstream of SMAD 3 leading to the pathogenesis of aortic aneurysms in these patients still remain elusive. Therefore, we aimed to investigate the vascular phenotypes of SMAD 3‐knockout mice. Methods and Results We have shown that angiotensin II–induced vascular inflammation, but not hypertension, leads to aortic aneurysms and dissections, ultimately causing aortic rupture and death in mice. Lipopolysaccharide‐triggered inflammation confirmed that enhanced aortic macrophage recruitment was essential for aneurysm formation in angiotensin II–infused SMAD3 ‐knockout mice. In contrast, phenylephrine‐triggered hypertension alone was insufficient to induce aortic aneurysms in mice. Using uniaxial tensile and contractility tests, we showed that SMAD3 deficiency resulted in defective aortic biomechanics and physiological functions, which caused weakening of the aortic wall and predisposed the mice to aortic aneurysms. Chromatin immunoprecipitation (ChIP) and re‐ChIP assays revealed that the underlying mechanism involved aberrant upregulation of inducible nitric oxide synthase ( iNOS )–derived nitric oxide production and activation of elastolytic matrix metalloproteinases 2 and 9. Administration of clodronate‐liposomes and iNOS inhibitor completely abrogated these aortic conditions, thereby identifying iNOS ‐mediated nitric oxide secretion from macrophages as the downstream event of SMAD3 that drives this severe pathology. Conclusions Macrophage depletion and iNOS antagonism represent 2 promising approaches for preventing aortic aneurysms related to SMAD3 mutations and merit further investigation as adjunctive strategies for the life‐threatening manifestations of AOS.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3