Akt1–Mediated Skeletal Muscle Growth Attenuates Cardiac Dysfunction and Remodeling After Experimental Myocardial Infarction

Author:

Araki Satoshi1,Izumiya Yasuhiro1,Hanatani Shinsuke1,Rokutanda Taku1,Usuku Hiroki1,Akasaki Yuichi1,Takeo Toru1,Nakagata Naomi1,Walsh Kenneth1,Ogawa Hisao1

Affiliation:

1. From the Department of Cardiovascular Medicine (S.A., Y.I., S.H., T.R., H.U., H.O.), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Molecular Cardiology (Y.A., K.W.), Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA; Division of Reproductive Engineering (T.T., N.N.), Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan.

Abstract

Background— It is appreciated that aerobic endurance exercise can attenuate unfavorable myocardial remodeling following myocardial infarction. In contrast, little is known about the effects of increasing skeletal muscle mass, typically achieved through resistance training, on this process. Here, we utilized transgenic (TG) mice that can induce the growth of functional skeletal muscle by switching Akt1 signaling in muscle fibers to assess the impact of glycolytic muscle growth on post-myocardial infarction cardiac remodeling. Methods and Results— Male-noninduced TG mice and their nontransgenic littermates (control) were subjected to left anterior coronary artery ligation. Two days after surgery, mice were provided doxycycline in their drinking water to activate Akt1 transgene expression in a skeletal muscle-specific manner. Myogenic Akt1 activation led to diminished left ventricular dilation and reduced contractile dysfunction compared with control mice. Improved cardiac function in Akt1 TG mice was coupled to diminished myocyte hypertrophy, decreased interstitial fibrosis, and increased capillary density. ELISA and protein array analyses demonstrated that serum levels of proangiogenic growth factors were upregulated in Akt1 TG mice compared with control mice. Cardiac eNOS was activated in Akt1 TG mice after myocardial infarction. The protective effect of skeletal muscle Akt activation on cardiac remodeling and systolic function was abolished by treatment with the eNOS inhibitor l -NAME. Conclusions— Akt1–mediated skeletal muscle growth attenuates cardiac remodeling after myocardial infarction and is associated with an increased capillary density in the heart. This improvement appears to be mediated by skeletal muscle to cardiac communication, leading to activation of eNOS-signaling in the heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3