Contribution of Monocytes/Macrophages to Compensatory Neovascularization

Author:

Moldovan Nicanor I.1,Goldschmidt-Clermont Pascal J.1,Parker-Thornburg Jan1,Shapiro Steven D.1,Kolattukudy Pappachan E.1

Affiliation:

1. From the Heart and Lung Institute and the Division of Cardiology, Department of Internal Medicine (N.I.M., P.J.G.-C.), and Neurobiotechnology Center (P.E.K, J.P.-T.), College of Medicine and Public Health, Ohio State University, Columbus, Ohio, and the Department of Pediatrics (S.D.S), Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Mo.

Abstract

Abstract —In a transgenic model of ischemic cardiomyopathy in which monocytes are attracted to the myocardium by the targeted overexpression of monocyte chemoattractant protein-1 (MCP-1), we have observed the presence of endothelial NO synthase and platelet endothelial cell adhesion molecule-1–negative tunnels, occasionally containing blood-derived cells, that probe the cardiac tissue. Immunohistochemical data show that monocytes/macrophages (MCs/Mphs) drill tunnels using the broad-spectrum mouse macrophage metalloelastase. 5-Bromo-2′-deoxyuridine incorporation and neo-endothelial markers present in the microvasculature of MCP-1 mouse hearts suggest an active angiogenic process. Further studies will be required to establish that the MC-/Mph-drilled tunnels evolve to become capillaries, connected to the existing vessels and colonized by circulating endothelial cell progenitors. This possibility is supported by the availability of these cells, which is demonstrated by cell tagging with β-galactosidase placed under an active endothelial Tie-2 promoter. This phenomenon might represent another mechanism, in addition to the secretion of the angiogenic factors, by which MCs/MPhs may participate in the elaboration of new blood vessels in adult tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3