Alterations in the Determinants of Diastolic Suction During Pacing Tachycardia

Author:

Bell Stephen P.1,Nyland Lori1,Tischler Marc D.1,McNabb Mark1,Granzier Henk1,LeWinter Martin M.1

Affiliation:

1. From the Cardiology Unit (S.P.B., L.N., M.D.T., M.M.L.), University of Vermont College of Medicine, Burlington, Vt, and Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology (M.M., H.G.), Washington State University, Pullman, Wash.

Abstract

Abstract —In cardiomyocytes, generation of restoring forces (RFs) responsible for elastic recoil involves deformation of the sarcomeric protein titin in conjunction with shortening below slack length. At the left ventricular (LV) level, recoil and filling by suction require contraction to an end-systolic volume (ESV) below equilibrium volume (Veq) as well as large-scale deformations, for example, torsion or twist. Little is known about RFs and suction in the failing ventricle. We undertook a comparison of determinants of suction in open-chest dogs previously subjected to 2 weeks of pacing tachycardia (PT) and controls. To assess the ability of the LV to contract below Veq, we used a servomotor to clamp left atrial pressure and produce nonfilling diastoles, allowing measurement of fully relaxed pressure at varying volumes. We quantified twist with sonomicrometry. We also assessed transmural ratios of N2B to N2BA titin isoforms and total titin to myosin heavy chain (MHC) protein. In PT, the LV did not contract below Veq, even with marked reduction of volume (end-diastolic pressure [EDP], 1 to 2 mm Hg), whereas in controls ESV was less than Veq when EDP was less than ≈5 mm Hg. In PT, both systolic twist and diastolic untwisting rate were reduced, and there was exaggerated transmural variation in titin isoform and titin-to-MHC ratios, consistent with the more extensible N2BA being present in larger amounts in the subendocardium. Thus, in PT, determinants of suction at the level of the LV are markedly impaired. The altered transmural titin isoform gradient is consistent with a decrease in RFs and may contribute to these findings.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3