Bone Sialoprotein Mediates Human Endothelial Cell Attachment and Migration and Promotes Angiogenesis

Author:

Bellahcène Akeila1,Bonjean Karine1,Fohr Berthold1,Fedarko Neal S.1,Robey Frank A.1,Young Marian F.1,Fisher Larry W.1,Castronovo Vincent1

Affiliation:

1. From the Metastasis Research Laboratory (A.B., K.B., V.C.), University of Liège, Liège, Belgium, and the Craniofacial and Skeletal Diseases Branch (B.F., N.S.F., F.A.R., M.F.Y., L.W.F.), National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Md.

Abstract

Abstract —Bone sialoprotein (BSP) is a secreted glycoprotein primarily found in sites of biomineralization. Recently, we demonstrated that BSP is strongly upregulated in osteotropic cancers and particularly those that exhibit microcalcifications. BSP contains an Arg-Gly-Asp (RGD) motif found in other adhesive molecules that interact with cellular integrins. In bone, BSP has been shown to mediate the attachment of osteoblasts and osteoclasts via α v β 3 integrin receptors. Ligands for α v β 3 integrin are considered to play a central role during angiogenesis. Therefore, we used human umbilical vein endothelial cells (HUVECs) to study the potential role of BSP in angiogenesis. We found that purified eukaryotic recombinant human BSP (rhBSP) is able to promote both adhesion and chemotactic migration of HUVECs in a dose-dependent manner. These interactions involve HUVEC α v β 3 integrin receptors and the RGD domain of BSP. Indeed, HUVECs attach to a recombinant BSP fragment containing the RGD domain, whereas this response is not observed with the same fragment in which RGD has been mutated to Lys-Ala-Glu (KAE). A cyclic RGD BSP peptide inhibits both adhesion and migration of HUVECs to rhBSP. Moreover, anti-α v β 3 but not anti-α v β 5 monoclonal antibodies also prevent BSP-mediated adhesion and migration of HUVECs. We observed that both rhBSP and the RGD BSP recombinant fragment stimulated ongoing angiogenesis on the chorioallantoic chick membrane assay. BSP angiogenic activity was inhibited by anti-α v β 3 antibody, and the KAE BSP fragment was inactive. Our findings represent the first report implicating BSP in angiogenesis. BSP could play a critical role in angiogenesis associated with bone formation and with tumor growth and metastatic dissemination.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3