Activation of Mitochondrial ATP-Sensitive K + Channel for Cardiac Protection Against Ischemic Injury Is Dependent on Protein Kinase C Activity

Author:

Wang Yigang1,Hirai Kyoji1,Ashraf Muhammad1

Affiliation:

1. From the Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio.

Abstract

Abstract —Protein kinase C (PKC) is involved in the second messenger signaling cascade during ischemic and Ca 2+ preconditioning. Given that the pharmacological activation of mitochondrial ATP-sensitive K + (mitoK ATP ) channels also mimics preconditioning, the mechanisms linking PKC activation and mitoK ATP channels remain to be established. We hypothesize that PKC activity is important for the opening of the mitoK ATP channel. To examine this, a specific opener of the mitoK ATP channel, diazoxide, was used in conjunction with subcellular distribution of PKC in a model of ischemia/reperfusion (I/R). Langendorff-perfused rat hearts were subjected to 40-minute ischemia followed by 30-minute reperfusion. Effects of activation of the mitoK ATP channel and other interventions on functional, biochemical, and pathological changes in ischemic hearts were assessed. In hearts treated with diazoxide, left ventricular end-diastolic pressure and coronary flow were significantly improved after I/R; lactate dehydrogenase release was also significantly decreased. The morphology was well preserved in diazoxide-treated hearts compared with nontreated ischemic control hearts. The salutary effects of diazoxide on the ischemic injury were similar to those of Ca 2+ preconditioning. Administration of sodium 5-hydroxydecanoate, an effective blocker of the mitoK ATP channel, or chelerythrine or calphostin C, an inhibitor of PKC, during diazoxide pretreatment or during continuous presence of diazoxide in the ischemic period, completely abolished the beneficial effects of the diazoxide on the I/R injury. Blockade of Ca 2+ entry during diazoxide treatment by inhibiting the L-type Ca 2+ channel with verapamil also completely reversed the beneficial effect of diazoxide during I/R. PKC-α was translocated to sarcolemma, whereas PKC-δ was translocated to the mitochondria and intercalated disc, and PKC-ε was translocated to the intercalated disc of the diazoxide-pretreated hearts. Colocalization studies for mitochondrial distribution with tetramethylrhodamine ethyl ester (TMRE) and PKC isoforms by immunoconfocal microscopy revealed that PKC-δ antibody specifically stained the mitochondria. ATP was significantly increased in the diazoxide-treated hearts. Moreover, the data suggest that activation and translocation of PKC to mitochondria appear to be important for the protection mediated by mitoK ATP channel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3