The Giant Protein Titin

Author:

Labeit Siegfried1,Kolmerer Bernhard1,Linke Wolfgang A.1

Affiliation:

1. the European Molecular Biology Laboratory (S.L., B.K.), Heidelberg, and the Institute of Physiology II (W.A.L.), University of Heidelberg (Germany).

Abstract

Titin is a giant protein of vertebrate striated muscles ( M r , ≥3000 kD). Its molecules are of filamentous shape and span from the Z disk to the M line, thereby forming a third filament system of the sarcomere. This filament system is important for both the structural integrity of the myofibril and the passive tension response of a stretched muscle fiber. The determination of the cDNA sequence of human cardiac titin has shown that the cardiac titin filament is formed by a single, giant, 27 000-residue-long polypeptide chain. The titin strand has a modular structure, and different modulular arrangements are expressed in different muscle tissue types by differential splicing. In the A band, the titin modules provide regular arrays of binding sites for other sarcomeric proteins, thereby contributing to a precise assembly of myofibrillar proteins in vivo. In the I band, two specific motif families, tandem-immunoglobulin domains and PEVK-rich sequences, confer extensibility to the titin filament. Expression of muscle tissue–specific length variants of the PEVK region by alternative splicing may explain the differences in the passive tension properties between various striated muscle types. Apart from the titin sequences with apparent functions for muscle structure and elasticity, the titin molecule contains a class of unique sequence insertions. Among these sequences are phosphorylation sites, a serine/threonine kinase domain, and binding sites for muscle-specific calpain proteases. Thus, it is likely that the titin filament also plays a role in myofibrillar signal transduction pathways.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3