Transient and Prolonged Increase in Endothelial Permeability Induced by Histamine and Thrombin

Author:

Amerongen Geerten P. van Nieuw1,Draijer Richard1,Vermeer Mario A.1,van Hinsbergh Victor W. M.1

Affiliation:

1. From the Gaubius Laboratory TNO-PG (G.P.v.N.A., R.D., M.A.V., V.W.M.v.H.), Leiden, and Institute for Cardiovascular Research, Vrije Universiteit (V.W.M.v.H.), Amsterdam, the Netherlands.

Abstract

Abstract —In the present study, we differentiated between short- and long-term effects of vasoactive compounds on human endothelial permeability in an in vitro model. Histamine induced a rapid and transient (<3 minutes) decrease in barrier function, as evidenced by a decreased transendothelial electrical resistance and an increased passage of 22 Na ions. This increase in permeability was inhibited completely by chelation of intracellular calcium ions by BAPTA-AM and inhibition of calmodulin activity and myosin light chain (MLC) phosphorylation. The presence of serum factors prolonged the barrier dysfunction induced by histamine. Thrombin by itself induced a prolonged barrier dysfunction (>30 minutes) as evidenced by an increased passage of peroxidase and 40 kDa dextran. It was dependent only partially on calcium ions and calmodulin. The protein tyrosine kinase inhibitors genistein and herbimycin A, but not the inactive analogue daidzein, inhibited to a large extent the increase in permeability induced by thrombin. Genistein and BAPTA-AM inhibited the thrombin-induced permeability in an additive way, causing together an almost complete prevention of the thrombin-induced increase in permeability. Inhibition of protein tyrosine kinase was accompanied by a decrease in MLC phosphorylation and a reduction in the extent of F-actin fiber and focal attachment formation. Inhibition of Rho A by C3 transferase toxin reduced both the thrombin-induced barrier dysfunction and MLC phosphorylation. Genistein and C3 transferase toxin did not elevate the cellular cAMP levels. No evidence was found for a significant role of protein kinase C in the thrombin-induced increase in permeability or in the accompanying MLC phosphorylation. These data indicate that in endothelial cell monolayers that respond to histamine in a physiological way, thrombin induces a prolonged increase in permeability by “calcium sensitization,” which involves protein tyrosine phosphorylation and Rho A activation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3