COP9 Signalosome Controls the Degradation of Cytosolic Misfolded Proteins and Protects Against Cardiac Proteotoxicity

Author:

Su Huabo1,Li Jie1,Zhang Hanming1,Ma Wenxia1,Wei Ning1,Liu Jinbao1,Wang Xuejun1

Affiliation:

1. From the State Key Laboratory of Respiratory Disease and Department of Pathophysiology, Guangzhou Medical University, Guangzhou, Guangdong, China (H.S., J.Liu, X.W.); Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion (H.S., J.Li, H.Z., J.Liu, X.W.); Vascular Biology Center (H.S., J.Li, W.M.) and Department of Pharmacology and Toxicology (H.S.), Medical College of Georgia, Georgia Regents University, Augusta; and Department of Molecular,...

Abstract

Rationale: Impaired degradation of misfolded proteins is associated with a large subset of heart diseases. Misfolded proteins are degraded primarily by the ubiquitin-proteasome system, but the ubiquitin ligases responsible for the degradation remain largely unidentified. The cullin deneddylation activity of the COP9 signalosome (CSN) requires all 8 CSN subunits (CSN1 through CSN8) and regulates cullin-RING ligases, thereby controlling ubiquitination of a large number of proteins; however, neither CSN nor cullin-RING ligases is known to regulate the degradation of cytosolic misfolded proteins. Objective: We sought to investigate the role of CSN8/CSN in misfolded protein degradation and cardiac proteinopathy. Methods and Results: Cardiac CSN8 knockout causes mouse premature death; hence, CSN8 hypomorphism (CSN8 hypo ) mice were used. Myocardial neddylated forms of cullins were markedly increased, and myocardial capacity of degrading a surrogate misfolded protein was significantly reduced by CSN8 hypomorphism. When introduced into proteinopathic mice in which a bona fide misfolded protein R120G missense mutation of αβ-crystallin (CryAB R120G ) is overexpressed in the heart, CSN8 hypomorphism aggravated CryAB R120G -induced restrictive cardiomyopathy and shortened the lifespan of CryAB R120G mice, which was associated with augmented accumulation of protein aggregates, increased neddylated proteins, and reduced levels of total ubiquitinated proteins and LC3-II in the heart. In cultured cardiomyocytes, both CSN8 knockdown and cullin-RING ligase inactivation suppressed the ubiquitination and degradation of CryAB R120G but not native CryAB, resulting in accumulation of protein aggregates and exacerbation of CryAB R120G cytotoxicity. Conclusions: (1) CSN8/CSN promotes the ubiquitination and degradation of misfolded proteins and protects against cardiac proteotoxicity, and (2) cullin-RING ligases participate in degradation of cytosolic misfolded proteins.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3