Cytokine Activation of Nuclear Factor κB in Vascular Smooth Muscle Cells Requires Signaling Endosomes Containing Nox1 and ClC-3

Author:

Miller Francis J.1,Filali Mohammed1,Huss Gina J.1,Stanic Bojana1,Chamseddine Ali1,Barna Thomas J.1,Lamb Fred S.1

Affiliation:

1. From the Departments of Medicine (F.J.M., B.S., A.C.) and Pediatrics (M.F., G.J.H., T.J.B., F.S.L.), University of Iowa, Iowa City.

Abstract

Reactive oxygen species (ROS) are mediators of intracellular signals for a myriad of normal and pathologic cellular events, including differentiation, hypertrophy, proliferation, and apoptosis. NADPH oxidases are important sources of ROS that are present in diverse tissues throughout the body and activate many redox-sensitive signal transduction and gene expression pathways. To avoid toxicity and provide specificity of signaling, ROS production and metabolism necessitate tight regulation that likely includes subcellular compartmentalization. However, the constituent elements of NADPH oxidase-dependent cell signaling are not known. To address this issue, we examined cytokine generation of ROS and subsequent activation of the transcription factor nuclear factor κB in vascular smooth muscle cells (SMCs). Tumor necrosis factor-α and interleukin (IL)-1β stimulation of SMCs resulted in diphenylene iodonium-sensitive ROS production within intracellular vesicles. Nox1 and p22 phox , integral membrane subunits of NADPH oxidase, coimmunoprecipitated with early endosomal markers in SMCs. ClC-3, an anion transporter that is primarily found in intracellular vesicles, also colocalized with Nox1 in early endosomes and was necessary for tumor necrosis factor-α and interleukin-1β generation of ROS. Cytokine activation of nuclear factor κB in SMCs required both Nox1 and ClC-3. We conclude that in response to tumor necrosis factor-α and interleukin-1β, NADPH oxidase generates ROS within early endosomes and that Nox1 cannot produce sufficient ROS for cell signaling in the absence of ClC-3. These data best support a model whereby ClC-3 is required for charge neutralization of the electron flow generated by Nox1 across the membrane of signaling endosomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3