Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension

Author:

Zhou Xiaofei12,Jiang Yuanqing12,Wang Yuewen3,Fan Linge12,Zhu Yunhui14ORCID,Chen Yefeng12,Wang Yiran12,Zhu Yingyi12,Wang Hongkun5,Pan Zihang67ORCID,Li Zhoubin8,Zhu Xiaolong1,Ren Ruizhe12,Ge Zhen9,Lai Dongwu1,Lai En Yin8ORCID,Chen Ting8ORCID,Wang Kai67ORCID,Liang Ping5ORCID,Qin Lingfeng4,Liu Cuiqing10,Qiu Cong1211,Simons Michael4ORCID,Yu Luyang1211ORCID

Affiliation:

1. Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province of Sir Run Run Shaw Hospital (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, X. Zhu, R.R., D.L., C.Q., L.Y.), Hangzhou, China.

2. MOE Laboratory of Biosystems Homeostasis & Protection of College of Life Sciences, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute (X. Zhou, Y.J., L.F., Yunhui Zhu, Y.C., Yiran Wang, Yingyi Zhu, R.R., C.Q., L.Y.), Hangzhou, China.

3. School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, China (Yuewen Wang).

4. Cardiovascular Research Center, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (X. Zhu, L.Q., M.S.).

5. Institute of Translational Medicine (H.W., P.L.), Hangzhou, China.

6. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Z.P., K.W.).

7. Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Z.P., K.W.).

8. The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L., E.Y.-L., T.C.).

9. School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.G.).

10. School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China (C.L.).

11. Cancer Center, Zhejiang University (C.Q., L.Y.), Hangzhou, China.

Abstract

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell–derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immunomodulatory macrophages and Treg in pulmonary hypertension;Comparative Clinical Pathology;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3