NAT10 Is Involved in Cardiac Remodeling Through ac4C-Mediated Transcriptomic Regulation

Author:

Shi Jing1ORCID,Yang Chuanxi2ORCID,Zhang Jing1,Zhao Kun1,Li Peng1ORCID,Kong Chuiyu3,Wu Xiaoguang1,Sun Haoliang4ORCID,Zheng Rui4,Sun Wei1,Chen Lianmin5ORCID,Kong Xiangqing16

Affiliation:

1. Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China.

2. Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China (C.Y.).

3. Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Jiangsu, China (C.K.).

4. Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China.

5. Changzhou Medical Center of the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University and Department of Cardiology of the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China (L.C.).

6. Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China (X.K.).

Abstract

BACKGROUND: Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS: NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS: NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS: Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3