Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy

Author:

Zhou Jibin1,Ahmad Firdos1,Parikh Shan1,Hoffman Nichole E.1,Rajan Sudarsan1,Verma Vipin K.1,Song Jianliang1,Yuan Ancai1,Shanmughapriya Santhanam1,Guo Yuanjun1,Gao Erhe1,Koch Walter1,Woodgett James R.1,Madesh Muniswamy1,Kishore Raj1,Lal Hind1,Force Thomas1

Affiliation:

1. From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).

Abstract

Rationale: Cardiac myocyte–specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3–targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. Objective: To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. Methods and Results: We generated tamoxifen-inducible cardiac myocyte–specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe–induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Conclusions: Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3