Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock

Author:

Gazit Salomé L.1,Mariko Boubacar1,Thérond Patrice1,Decouture Benoit1,Xiong Yuquan1,Couty Ludovic1,Bonnin Philippe1,Baudrie Véronique1,Le Gall Sylvain M.1,Dizier Blandine1,Zoghdani Nesrine1,Ransinan Jessica1,Hamilton Justin R.1,Gaussem Pascale1,Tharaux Pierre-Louis1,Chun Jerold1,Coughlin Shaun R.1,Bachelot-Loza Christilla1,Hla Timothy1,Ho-Tin-Noé Benoit1,Camerer Eric1

Affiliation:

1. From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry,...

Abstract

Rationale: Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. Objective: To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. Methods and Results: S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus–response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P 2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P 1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. Conclusions: Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3