miR-223 Exerts Translational Control of Proatherogenic Genes in Macrophages

Author:

Nguyen My-Anh12,Hoang Huy-Dung32,Rasheed Adil12ORCID,Duchez Anne-Claire1,Wyatt Hailey1,Cottee Mary Lynn12,Graber Tyson E.3ORCID,Susser Leah12,Robichaud Sabrina12ORCID,Berber İbrahim4ORCID,Geoffrion Michele1,Ouimet Mireille12ORCID,Kazan Hilal5,Maegdefessel Lars67ORCID,Mulvihill Erin E.12,Alain Tommy32,Rayner Katey J.82

Affiliation:

1. University of Ottawa Heart Institute, Canada (M.-A.N., A.R., A.-C.D., H.W., M.L.C., L.S., S.R., M.G., M.O., E.E.M., K.J.R.).

2. Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada (M.-A.N., H.-D.H., A.R., M.L.C., L.S., S.R., M.O., E.E.M., T.A., K.J.R.).

3. Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada (H.-D.H., T.E.G., T.A.).

4. Electrical and Computer Engineering Graduate Program, Antalya Bilim University, Turkey (I.B.).

5. Department of Computer Engineering, Antalya Bilim University, Turkey (H.K.).

6. Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.).

7. Department of Medicine, Karolinska Institute, Stockholm, Sweden (L.M.).

8. Centre for Infection, Immunity & Inflammation, Faculty of Medicine, University of Ottawa, Canada (K.J.R.).

Abstract

Background: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NF k B signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. Methods and Results: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3 . Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223 −/− bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1β). Deficiency of miR-223 in bone marrow–derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene ( Sp3 ) and pro-inflammatory marker ( Il-6 ) are enhanced whereas the expression of Abca1 and anti-inflammatory marker ( Retnla ) are reduced in aortic arches from mice lacking miR-223 in bone marrow–derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223 −/− bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. Conclusions: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3