Shear Stress Activates p60src-Ras-MAPK Signaling Pathways in Vascular Endothelial Cells

Author:

Jalali Shila1,Li Yi-Shuan1,Sotoudeh Mohammad1,Yuan Suli1,Li Song1,Chien Shu1,Shyy John Y-J.1

Affiliation:

1. From the Department of Bioengineering and Institute for Biomedical Engineering, University of California, San Diego.

Abstract

Abstract —The aim of this study was to elucidate the upstream signaling mechanism that mediates the fluid shear stress activation of mitogen-activated protein kinases (MAPKs), including c-Jun NH 2 -terminal kinase (JNK) and extracellular signal–regulated kinases (ERKs), in vascular endothelial cells (ECs). Our results indicate that p60src is rapidly activated by fluid shear stress in bovine aortic endothelial cells (BAECs). Shear stress induction of the hemagglutinin (HA) epitope–tagged HA-JNK1 and the Myc epitope–tagged Myc-ERK2 was significantly attenuated by v-src(K295R) and c-src(K295R), the kinase-defective mutants of v-src and c-src, respectively. HA-JNK1 and Myc-ERK2 were activated by c-src(F527), a constitutively activated form of p60src, and the activation was abolished by RasN17, a dominant-negative mutant of p21ras. In contrast, although HA-JNK1 and Myc-ERK2 were also activated by RasL61, an activated form of p21ras, the activation was not affected by v-src(K295R). These results indicate that p60src is upstream to the Ras-JNK and Ras-ERK pathways in response to shear stress. The shear stress inductions of the promoters of monocyte chemotactic protein-1 (MCP-1) and c- fos , driven by TPA-responsive element (TRE) and serum-responsive element (SRE), respectively, were attenuated by v-src(K295R). This attenuation is associated with decreased transcriptional activities of c-Jun and Elk-1, the transcription factors targeting TRE and SRE, respectively. Thus, p60src plays a critical role in the shear stress activation of MAPK pathways and induction of Activating Protein-1 (AP-1)/TRE and Elk-1/SRE–mediated transcription in ECs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3