Adaptive Randomization Method to Prevent Extreme Instances of Group Size and Covariate Imbalance in Stroke Trials

Author:

Italiano Dominic12ORCID,Campbell Bruce23ORCID,Hill Michael D.4,Johns Hannah T.13ORCID,Churilov Leonid13ORCID

Affiliation:

1. Melbourne Medical School (D.I., H.T.J., L.C.), University of Melbourne, Parkville, Victoria, Australia.

2. Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital (B.C.), University of Melbourne, Parkville, Victoria, Australia.

3. Australian Stroke Alliance, Melbourne Brain Centre, Royal Melbourne Hospital, Victoria, Australia (D.I., B.C., H.T.J., L.C.).

4. Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada (M.D.H.).

Abstract

BACKGROUND: A recent review of randomization methods used in large multicenter clinical trials within the National Institutes of Health Stroke Trials Network identified preservation of treatment allocation randomness, achievement of the desired group size balance between treatment groups, achievement of baseline covariate balance, and ease of implementation in practice as critical properties required for optimal randomization designs. Common-scale minimal sufficient balance (CS-MSB) adaptive randomization effectively controls for covariate imbalance between treatment groups while preserving allocation randomness but does not balance group sizes. This study extends the CS-MSB adaptive randomization method to achieve both group size and covariate balance while preserving allocation randomness in hyperacute stroke trials. METHODS: A full factorial in silico simulation study evaluated the performance of the proposed new CSSize-MSB adaptive randomization method in achieving group size balance, covariate balance, and allocation randomness compared with the original CS-MSB method. Data from 4 existing hyperacute stroke trials were used to investigate the performance of CSSize-MSB for a range of sample sizes and covariate numbers and types. A discrete-event simulation model created with AnyLogic was used to dynamically visualize the decision logic of the CSSize-MSB randomization process for communication with clinicians. RESULTS: The proposed new CSSize-MSB algorithm uniformly outperformed the CS-MSB algorithm in controlling for group size imbalance while maintaining comparable levels of covariate balance and allocation randomness in hyperacute stroke trials. This improvement was consistent across a distribution of simulated trials with varying levels of imbalance but was increasingly pronounced for trials with extreme cases of imbalance. The results were consistent across a range of trial data sets of different sizes and covariate numbers and types. CONCLUSIONS: The proposed adaptive CSSize-MSB algorithm successfully controls for group size imbalance in hyperacute stroke trials under various settings, and its logic can be readily explained to clinicians using dynamic visualization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3